第367章 神性从未消失(3 / 6)
,大牛突然对你的报告感兴趣。
你自然喜上眉梢。
罗塔不是小透明,可林燃也不是一般大牛啊。
林燃走上台,借用黑板,开始他的讲解。
他先擦掉部分笔记,画出一个秩3的二元拟阵矩阵表示:一个3xn的GF(2)矩阵,列向量线性独立。
“让我们从基本开始。拟阵M的基是其独立集的最大子集。对于GF(2)-可表示的M,其表示矩阵的列满足:任意子集的线性相关性对应于拟阵的循环。”
现场所有人都意识到,林燃要开始表演了。
林燃接着写道:“假设M避免了已知禁子:7点拟阵、其对偶,以及5点3秩均匀拟阵。
对于r≤3,我们用Whitney的破阵理论分类:所有这样的M必须是图拟阵或其补,或二元仿射几何AG(3,2)的子类。
现在,推广到r=4:考虑Tutte多项式T(M;x,y),这是一个双变量多项式,编码了M的独立集和循环。
T(M;1,1)给出基的数量”
林燃结束时,擦掉粉笔灰:“这为GF(2)上的低秩情况提供了部分证明。
如果推广到更高阶域,或许需Schauder-Leray拓扑工具。
罗塔教授,你的猜想很有意思。
仓促之下,我也只能给一个特定情况下的完整证明。”
罗塔已经沉浸在林燃的解答里无法自拔,台下的反应更是如潮水般汹涌。
从前到后,格罗滕迪克带头起身鼓掌。
“这是哥廷根神迹再现吗?”
“罗塔整个人都呆住了。”
“我就想问问,教授结婚了没?我想把我女儿嫁给他!或者不嫁给他,只是和他一起培育一个下一代也行啊!”
台下议论声四起。
这是短期无法理解林燃解法的数学家们,不做这一行肯定没那么快懂。
大佬们则在讨论林燃的解法本身。
列夫·庞特里亚金低声和身旁的数学家讨论道:“教授的归纳太巧妙了,他用Tutte多项式桥接了表示论和组合,这太天才了!这从Whitney的2-同构直接跳到Tutte的分解,填补了低秩空白,这就是天才的灵光一闪吗?”
庞特里亚金是苏俄第一位获得菲尔兹奖的数学家,他拿菲尔兹就是在今年。
↑返回顶部↑
温馨提示:亲爱的读者,为了避免丢失和转马,请勿依赖搜索访问,建议你收藏【顶点小说网】 m.dy208.com。我们将持续为您更新!
请勿开启浏览器阅读模式,可能将导致章节内容缺失及无法阅读下一章。